In Vivo Magnetic Resonance Imaging and Microwave Thermotherapy of Cancer Using Novel Chitosan Microcapsules
نویسندگان
چکیده
Herein, we develop a novel integrated strategy for the preparation of theranostic chitosan microcapsules by encapsulating ion liquids (ILs) and Fe3O4 nanoparticles. The as-prepared chitosan/Fe3O4@IL microcapsules exhibit not only significant heating efficacy in vitro under microwave (MW) irradiation but also obvious enhancement of T2-weighted magnetic resonance (MR) imaging, besides the excellent biocompatibility in physiological environments. The chitosan/Fe3O4@IL microcapsules show ideal temperature rise and therapeutic efficiency when applied to microwave thermal therapy in vivo. Complete tumor elimination is realizing after MW irradiation at an ultralow power density (1.8 W/cm(2)), while neither the MW group nor the chitosan microcapsule group has significant influence on the tumor development. The applicability of the chitosan/Fe3O4@IL microcapsules as an efficient contrast agent for MR imaging is proved in vivo. Moreover, the result of in vivo systematic toxicity shows that chitosan/Fe3O4@IL microcapsules have no acute fatal toxicity. Our study presents an interesting type of multifunctional platform developed by chitosan microcapsule promising for imaging-guided MW thermotherapy.
منابع مشابه
A Novel Biocompatible Nanoprobe Based on Lipoproteins for Breast Cancer Cell Imaging
Objective(s): Contrast-enhanced magnetic resonance imaging (MRI) of breast cancer provides valuable data on the disease state of patients. Biocompatible nanoprobes are expected to play a pivotal role in medical diagnosis in the future owing to their prominent advantages. The present study aimed to introduce a novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging.<br...
متن کاملGelatin microcapsules for enhanced microwave tumor hyperthermia.
Local and rapid heating by microwave (MW) irradiation is important in the clinical treatment of tumors using hyperthermia. We report here a new thermo-seed technique for the highly efficient MW irradiation ablation of tumors in vivo based on gelatin microcapsules. We achieved 100% tumor elimination in a mouse model at an ultralow power of 1.8 W without any side-effects. The results of MTT assay...
متن کاملMultifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کاملSynthesis and biological evaluation of a novel Glucosylated Derivative of Gadolinium Diethylenetriaminepentaacetic acid for Tumor Magnetic Resonance Imaging
Cancer detection in early stage using a powerful and noninvasive tool is of high global interest. In this experiment, a small-molecular-weight glucose based derivative of Gd3+-1-(4-isothiocyanatobenzyl) diethylene tri amine penta acetic acid (Gd3+-p-SCN-Bn‐DTPA‐DG) as a novel potential MR imaging contrast agents was synthesized. Gd3+-p-SCN-Bn‐DTPA‐DG was synthesized with reacting of Glucosamine...
متن کاملSynthesis and biological evaluation of a novel Glucosylated Derivative of Gadolinium Diethylenetriaminepentaacetic acid for Tumor Magnetic Resonance Imaging
Cancer detection in early stage using a powerful and noninvasive tool is of high global interest. In this experiment, a small-molecular-weight glucose based derivative of Gd3+-1-(4-isothiocyanatobenzyl) diethylene tri amine penta acetic acid (Gd3+-p-SCN-Bn‐DTPA‐DG) as a novel potential MR imaging contrast agents was synthesized. Gd3+-p-SCN-Bn‐DTPA‐DG was synthesized with reacting of Glucosamine...
متن کامل